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Abstract: There is increasing interest in long-term plans that can adapt to changing 

situations under conditions of deep uncertainty. We argue that a sustainable plan should 

not only achieve economic, environmental, and social objectives, but should be robust and 

able to be adapted over time to (unforeseen) future conditions. Large numbers of papers 

dealing with robustness and adaptive plans have begun to appear, but the literature is 

fragmented. The papers appear in disparate journals, and deal with a wide variety of policy 

domains. This paper (1) describes and compares a family of related conceptual approaches 

to designing a sustainable plan, and (2) describes several computational tools supporting 

these approaches. The conceptual approaches all have their roots in an approach to long-

term planning called Assumption-Based Planning. Guiding principles for the design of a 

sustainable adaptive plan are: explore a wide variety of relevant uncertainties, connect 

short-term targets to long-term goals over time, commit to short-term actions while 

keeping options open, and continuously monitor the world and take actions if necessary.  

A key computational tool across the conceptual approaches is a fast, simple  

(policy analysis) model that is used to make large numbers of runs, in order to explore the 

full range of uncertainties and to identify situations in which the plan would fail. 
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1. Introduction 

“It is not the strongest of the species that survive, nor the most intelligent, but the ones most 

responsive to change.” 

Charles Darwin 

Translated into long-term planning terms, this well-known quote of Darwin suggests that 

sustainable (strong) plans should be adaptive plans to survive changes. (In this paper, we use the terms 

“plans” and “policies” interchangeably. Plans are usually made in the private sector, while policies 

apply mainly to the public sector.) The World Commission on Environment and Development (1987), 

in a report often referred to as the “Brundtland report” after its main author, introduced a well-known 

definition of sustainable development: “development that meets the needs of the present without 

compromising the ability of future generations to meet their own needs” [1]. In practice, this definition 

of sustainability has often been summarized as meeting economic, environmental, and social 

objectives now and in the future. Given the uncertain changing conditions many decisionmakers are 

facing nowadays, a sustainable plan is not only one that is able to achieve objectives related to society, 

economy, and environment, but a sustainable plan should also be robust, meaning that it performs 

satisfactorily under a wide variety of futures, and adaptive, meaning that it can be adapted to changing 

(unforeseen) future conditions [2]. The question of how to design such plans is rarely addressed in the 

sustainability literature.  

A major challenge in designing sustainable plans is the requirement to accept, understand, and 

manage uncertainty, since: 

 not all uncertainties about the future can be eliminated; 

 ignoring uncertainty could mean that we limit our ability to take corrective action in the 

future and end up in situations that could have been avoided; and  

 ignoring uncertainty can result in missed chances and opportunities, and lead to  

unsustainable plans. 

Most of the traditional applied scientific work in the engineering, social, and natural sciences has 

been built on the supposition that the uncertainties result from a lack of information, which “has led to 

an emphasis on uncertainty reduction through ever-increasing information seeking and processing” [3], 

or from random variation, which has concentrated efforts on stochastic processes and statistical 

analysis. However, most of the important strategic planning problems currently faced by 

decisionmakers are characterized by uncertainties about the future that cannot be reduced by gathering 

more information and are not statistical in nature [4]. The uncertainties are unknowable at the present 

time, but will be reduced over time. They can involve uncertainties about all aspects of a long-term 

strategic planning problem—external developments, the appropriate (future) system model, and the 
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valuation of the model outcomes by (future) stakeholders. Such situations have been characterized as 

having “deep uncertainty”—defined as “the condition in which analysts do not know or the parties to a 

decision cannot agree upon (1) the appropriate models to describe interactions among a system’s 

variables, (2) the probability distributions to represent uncertainty about key parameters in the models, 

and/or (3) how to value the desirability of alternative outcomes” [4,5]. This implies that one can 

(incompletely) enumerate multiple possibilities for the system model, the probability distributions, and 

sets of values, without being able or willing to rank order the possibilities in terms of how likely or 

plausible they are judged to be [6]. 

Although policy analysts and strategic planners are aware that they are facing deep uncertainty, 

most of them still develop plans based on the assumption that the future can be predicted.  

They develop a static “optimal” plan using a single “most likely” future, often based on the 

extrapolation of trends, or a static “robust” plan that will produce acceptable outcomes in a small 

number of hypothesized future worlds [5,7]. However, if the future turns out to be different from the 

hypothesized future(s), the plan is likely to fail. McInerney et al. [8] liken this to “dancing on the tip of 

a needle”. Furthermore, the world is continuously changing, so the conditions planners need to deal 

with are continuously changing. Therefore, plans need to be adapted to meet these changing 

conditions. But, it is rare that such adaptation has been planned for in advance. 

Any single guess about the future is likely to prove wrong. The performance of plans optimized for 

a most likely future can deteriorate very quickly due to small deviations from the most likely future, let 

alone in the face of surprise. Even analyzing a well-crafted handful of scenarios will miss most of the 

future’s richness and provides no systematic means to examine their implications [9–11]. This is 

particularly true for methods based on detailed models. Such models that look far into the future 

should raise troubling questions about their assumptions and their validity in the minds of both the 

model builders and the consumers of their output. Yet the root of the problem lies not in the models 

themselves, but in the way in which they are used. Too often, analysts ask “what will happen?”, thus 

trapping themselves in a losing game of prediction, instead of the question they really would like to 

have answered: “Given that one cannot predict, which actions available today are likely to serve best in 

the future?” Broadly speaking, although there are differences in definitions, and ambiguities in 

meanings, the literature offers four (overlapping, not mutually exclusive) ways for dealing with deep 

uncertainty in making sustainable plans [12]: 

 resistance: plan for the worst possible case or future situation 

 resilience: whatever happens in the future, make sure that the system can recover quickly 

 static robustness: aim at reducing vulnerability in the largest possible range of conditions 

 dynamic robustness (or flexibility): plan to change over time, in case conditions change 

The first approach is likely to be very costly and might not produce a plan that works well because 

of surprises, or what some call “Black Swans” [13]. The second approach accepts short-term pain 

(negative system performance), but focuses on recovery. The third and fourth approaches do not use 

models to produce forecasts. Instead of determining the best predictive model and solving for the plan 

that is optimal (but fragilely dependent on assumptions), in the face of deep uncertainty it may be 

wiser to seek among the alternatives those actions that are most robust—that achieve a reasonable level 

of goodness across the myriad models and assumptions consistent with known facts. This is the heart 



Sustainability 2013, 5                       

 

 

958

of any robust decision method. A robust plan is defined to be one that yields outcomes that are deemed 

to be satisfactory according to some selected assessment criteria across a wide range of future plausible 

states of the world [14]. This is in contrast to an optimal plan that may achieve the best results among 

all possible plans but carries no guarantee of doing so beyond a narrowly defined set of circumstances. 

A plan based on the concept of robustness is also closer to the actual reasoning process employed by 

senior planners and executive decisionmakers. As shown by Lempert and Collins [15], analytic 

approaches that seek robust plans are often appropriate when uncertainty is deep and a rich array of 

options is available to decisionmakers.  

This paper deals with static and dynamic robustness to reach a sustainable plan. A plan that can 

adapt to changing conditions is well suited to situations involving deep uncertainty. An adaptive plan 

is developed in light of the multiplicity of plausible futures that lie ahead, and is designed to be 

changed over time as new information becomes available. Thus, changes become part of a larger, 

recognized process and are not forced to be made repeatedly on an ad-hoc basis. Planners, through 

monitoring and corrective actions, keep the system headed toward the original goals. 

There is a definite appetite for adaptive approaches. However, although the concept of adaptive 

policies can be traced back to 1927, when John Dewey [16] proposed that “policies be treated as 

experiments, with the aim of promoting continual learning and adaptation in response to experience 

over time”, a recent literature review conducted at the International Institute for Sustainable 

Development found that the literature relating directly to the topic of adaptive policies is limited [17], 

and a typology of approaches has yet to emerge. A useful division of approaches suggested by  

Burton [18] is based on whether the adaptation is planned for in advance and is externally initiated or 

emerges from changes within the system (see, below). That is, the approaches can be divided into: 

 Planned adaptation, which is the result of deliberate decisions, based on an awareness that 

conditions might change or have changed and that action is required to return to, maintain, 

or achieve a desired state.  

 Autonomous adaptation, which is adaptation that is not a planned external response to a 

situation, but is an internal system reaction due to changes within the system. (This is 

sometimes referred to as resilience.) 

As shown in Table 1, Burton [18] has three additional dimensions with which he categorizes (climate) 

adaptation approaches: (1) whether the actions taken are anticipatory, concurrent, or reactive; (2) 

whether the temporal scope is short term or long term; and (3) whether the spatial scope is localized  

or widespread.  

This paper deals with approaches to planned adaptation that are both anticipatory and reactive, that 

are long term, and that can be both localized and widespread. A plan that embodies these ideas allows 

for its adaptation over time to meet changing circumstances, and can thus be considered a sustainable 

plan. In Section 2, we present an overview of planned adaptation approaches for designing sustainable 

plans. In Section 3, we discuss the computational support tools for adaptation planning that have been 

combined with these planned adaptation approaches. These tools and approaches are often 

interconnected. Some of these methods could even be categorized both as an approach and as a 

computational tool. From the two discussions in Sections 2 and 3, we identify common principles for 
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designing adaptive plans and for providing computational support to the design process, which are 

presented in Section 4 Section 5 presents our conclusions. 

Table 1. Classification of adaptation measures (adapted from [18]). 

Adaptation based on: Type of adaptation 

Intent 

In relation to climatic 

stimulus 

Autonomous 

e.g., unmanaged natural systems 

Planned 

e.g., public agencies 

Timing of actions Reactive 

From observed 

modification 

Concurrent 

During 

Anticipatory 

Prior modification 

Temporal scope Short term 

Adjustment, instantaneous, 

autonomous 

Long term 

Adaptation, cumulative, policy 

Spatial scope Localized Widespread 

2. Approaches for Designing Sustainable Plans 

A variety of different approaches for designing robust plans under deep uncertainty have been 

developed, but few produce dynamic robust plans. Traditional scenario planning assesses the 

performance of alternative static plans under different hypothetical futures (e.g., [19,20]). Given a 

static plan, Dewar et al. [21] used signposts to monitor the need for actions to either shape the future or 

to reduce the plan’s vulnerability to uncertain future developments. They called this “Assumption-

Based Planning” (ABP). This was a first step towards adaptive planning. In contrast to static robust 

plans, adaptive planning defines contingency plans and specified conditions, called signposts and 

triggers, under which the plan should be reconsidered and revised [22]. In this section we briefly 

introduce ABP, and then provide an overview of several adaptive planning approaches that are directly 

related to the principles underlying ABP—one that produces a static robust plan, and others that 

produce dynamic robust plans. 

2.1. Assumption-Based Planning 

Assumption-Based Planning (ABP) [21,23] was developed at the RAND Corporation in the late 

1980s as a tool for improving the adaptability and robustness of existing plans, not as a tool for 

creating plans. It was designed to make a plan more resistant to significant change, and to help an 

organization to identify when to adapt the plan. ABP was specifically developed in response to 

shortcomings of the traditional scenario planning approach. The scenario planning approach [19] 

identifies a future world with high plausibility and finds a plan that would work well in that world. 

ABP turns this approach upside down. It begins by assuming that there is a proposed plan, or that there 

is a plan already in operation. It then tries to protect the plan from failing, by examining each of the 

underlying assumptions, and seeing what would happen to the plan if that assumption were not to  

be true. 

ABP identifies the assumptions upon which the success of the plan most heavily rests (the  

“load-bearing” assumptions) and the assumptions that are most vulnerable to being overturned by 
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future events. Assumptions that are both load-bearing and vulnerable are the most likely to produce 

nasty surprises as the plan unfolds. To deal with potential surprises, ABP produces three things: 

signposts, shaping actions, and hedging actions. A signpost is an event or threshold that, if detected, 

signifies that a vulnerable assumption is being broken or is dangerously weak, and that some action 

should be taken. A shaping action is an action that is intended to help protect an uncertain 

assumption—to control the future as much as possible. A hedging action prepares for the possibility 

that an assumption will fail, despite the shaping actions. (Insurance is a classic hedging action.)  

Figure 1 illustrates the five steps in ABP. 

Figure 1. The Five Steps in Assumption-Based Planning [21]. 

 

ABP was first used to help the U.S. Army with a long-range planning exercise 30 years in the  

future [24]. It has subsequently been applied to U.S. Navy, Air Force, and Marines planning, and has 

been used by planners in at least two militaries outside the United States. It has also been used to 

improve plans for public enterprises, ranging from a small nonprofit organization to a large water 

district, and has been used to test plans in higher education and in private businesses [23]. 

2.2. Robust Decision Making 

Robust Decision Making (RDM) is an approach together with a set of model-based methods and 

tools that supports decisionmaking under deep uncertainty and is used to produce a static robust plan. 

Relating RDM to Table 1, its approach to adaptation is planned, anticipatory, long term, and 

widespread. It has been developed over the last 15 years, primarily by researchers associated with the 

RAND Corporation. The RDM framework uses multiple views of the future to support a thorough 

investigation of modeling results that helps to identify a static plan that (1) is robust (i.e., it performs 

“well enough” across a broad range of plausible futures, but may not perform optimally in any  

single future), (2) avoids most situations in which the plan would fail to meet its goals, and (3) makes 

clear the remaining vulnerabilities of the plan (i.e., conditions under which the plan would fail to meet 

its goals) [5,25]. 

Assumptions

Signposts

Shaping
actions

Hedging
actions

Plausible events
within time horizon

Load-bearing,
vulnerable 
assumptions

Broken
assumptions

Plans

(1)

(2)

(3)

(4)

(5)
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According to descriptions in Keefe [26] and Hall et al. [27], RDM includes the following five steps: 

(1). Scoping—determine the scope of the analysis by identifying exogenous uncertainties, 

policy options, key relationships, and performance metrics; construct a simulation model 

that relates actions to consequences. 

(2). Simulation—identify a candidate policy to evaluate and run it against an ensemble of scenarios; 

(3). Scenario discovery—identify vulnerabilities of the candidate policy (i.e., which combinations 

of exogenous uncertainties, and in which ranges, cause the policy to fail to meet the goals); 

(4). Adaptation—identify hedging actions (modifying existing policies or defining new ones) to 

address these vulnerabilities. Repeat steps 2 and 3 for additional candidate policies; 

(5). Display—Plot expected outcomes of all policies over probabilities of vulnerable scenarios, 

and choose the most robust plan for implementation. 

RDM has been applied to strategic planning problems in a diverse set of fields, including economic 

policy [28], climate change [5,29], flood risk management [30], sea level rise [31], energy resource 

development [32], and water resources management [25,33,34]. RDM is often used in combination 

with computational support of the Scenario Discovery method (see Section 3). 

2.3. Adaptive Policymaking 

Walker et al. [22] specified a generic, structured approach for designing dynamic robust plans, 

called Adaptive Policymaking (APM). This approach was specifically developed to support the 

implementation of long-term plans despite the presence of uncertainties. The adaptive approach makes 

adaptation over time explicit at the outset of plan formulation. Thus, the inevitable changes become 

part of a larger, recognized process and are not forced to be made repeatedly on an ad hoc basis. 

Planners, through monitoring and corrective actions, would try to keep the system headed toward the 

original goals. McCray et al. [35] describe it succinctly as keeping plans “yoked to an evolving 

knowledge base”. 

APM occurs in two phases: (1) the design phase, in which the dynamic adaptive plan, monitoring 

program, and various pre- and post-implementation actions are designed, and (2) the implementation 

phase, in which the plan and the monitoring program are implemented and adaptive actions are taken, 

if necessary. Once the basic dynamic adaptive plan is established, the plan is implemented, and 

monitoring commences (Figure 2). The process is not necessarily linear, since the monitoring is 

continuous and may lead to different actions taken at various points over time. The framework was 

introduced by Walker et al. and has been revised and clarified over time [36,37]. The approach has 

sometimes been called “Dynamic Adaptive Planning” (DAP) in the literature. 

In Step I, the existing conditions of a system are analyzed and the objectives for future development 

are specified. In Step II, the way in which these objectives are to be achieved is specified by 

assembling a basic plan. This basic plan is made more robust (i.e., the chance that it will meet the 

objectives across a range of plausible futures is increased) through four types of actions (Step III): 

mitigating actions (actions to reduce the likely adverse effects of a plan); hedging actions (actions to 

spread or reduce the uncertain adverse effects of a plan); seizing actions (actions taken to seize likely 

available opportunities); and shaping actions (actions taken to reduce failure or enhance success). 

Even with the actions taken in Step III, there is still the need to monitor the plan’s performance and to 
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take action if necessary. This is called contingency planning (Step IV). Signposts specify information 

that should be tracked in order to determine whether the plan is meeting the conditions for its success. 

In addition, critical values of signpost variables (triggers) beyond which additional actions should be 

implemented are specified. There are four different types of actions that can be triggered by a signpost, 

which are specified in Step V: defensive actions (actions taken to clarify the basic plan, preserve its 

benefits, or meet outside challenges in response to specific triggers that leave the basic  

plan unchanged); corrective actions (adjustments to the basic plan); capitalizing actions (actions to 

take advantage of opportunities that can improve the performance of the basic plan); and a 

reassessment of the plan (initiated when the analysis and assumptions critical to the plan’s success 

have clearly lost validity). The Step III actions are anticipatory and concurrent; the Step IV actions  

are reactive. 

Figure 2. Steps in the Design Phase of the APM process: Setting the Stage, Assembling a 

Basic Plan, Increasing the Robustness of the Basic Plan, Setting up the Monitoring System, 

and Preparing the Trigger Responses [36]. 

 

APM has been applied for strategic planning for airports [36], expansion of the port of  

Rotterdam [38], flood risk management in the Netherlands in light of climate change [39], policies 

with respect to the implementation of innovative urban transport infrastructures [40], congestion road 

pricing [41], intelligent speed adaptation [42], magnetically levitated (Maglev) rail transport [41], and 

energy transitions [43]. 
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2.4. Adaptation Tipping Points and Adaptation Pathways 

There is a need to include time and feedbacks in an analysis for adaptive policies, since an endpoint 

in the future is not only determined by what we have experienced in the past and envision for the 

future, but also by what we will experience on our way to the future [44], how we respond to changes 

over time, and how our vision for the future changes over time [45]. Considering time in the 

development of a plan, results in a plan that can adapt over time as conditions change. A first step 

towards including time was the use of signposts, triggers, and contingency actions, such as is done in APM. 

Both the Adaptation Tipping Point (ATP) and Adaptation Pathways (AP) approaches consider the 

timing of actions explicitly in their approach. The ATP approach [46] was developed in response to a 

request from Dutch water managers arising out of their experiences in the development of the National 

Water Agreement in 2003 [47], which required that they update their plans in response to the release of 

new climate scenarios [48,49]. They desired a planning approach in which the final plan was less 

dependent on the climate scenarios available at the time of producing the plan. Instead of asking  

“what if scenario x occurs?”, the Adaptation Tipping Point approach focuses on “under what 

conditions will a given plan fail”, which is analogous to the question that is asked in  

Assumption-Based Planning. These are conditions under which the magnitude of external change is 

such that the current management strategy can no longer meet its objectives and new actions are 

needed to achieve the objectives. When this occurs in time (and even if it occurs) is unknown—it is 

dependent on the scenario. Consequently, under the ATP approach, when new climate scenarios are 

presented, only the timing of actions needed to protect the plan from failing need to be updated to 

reflect situations in the new scenarios. 

The Adaptation Pathways approach [2,45] (also referred to as the “route-map” approach or 

“decision pathways” approach) is a logical extension of the ATP approach, since the reaching of a 

tipping point requires new actions to be implemented to achieve the objectives. As a result, a pathway 

emerges. Although the AP approach was developed with a focus on water management, it is a generic 

approach that can be applied to other long-term strategic planning problems. The approach encourages 

decisionmakers to think about “what if” situations and their outcomes, and to make decisions over time 

to adapt while maintaining flexibility with respect to making future changes [50]. The approach aims 

at building flexibility into the overall adaptation strategy (rather than into the individual actions) by 

sequencing the implementation of actions over time in such a way that the system is adapted over time 

to changing climate, social, economic conditions, etc., and options are left open to deal with a range of 

plausible future conditions. 

The AP approach produces an overview of alternative routes into the future. An effective way of 

communicating this is shown in Figure 3. Similar to a Metro map (see, for example, [51]), the 

adaptation pathways map presents different routes to get to a desired point in the future. All routes 

presented meet pre-specified minimum performance levels, such as a safety norm. They can, thus, be 

considered as “different ways leading to Rome” (as is true of different routes to a specified destination 

on the Metro). Also, the moment of an ATP (“terminal station”) and the available actions at all 

potential ATPs are shown (via “transfer stations”). Due to constraints on actions, some routes are 

available only in some of the scenarios (dashed lines). Actions that add little to the performance of a 

route are translucent. With the map, it is possible to identify opportunities, no-regret actions, lock-ins, 
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and the timing of actions, in order to support decisionmaking in a changing environment. That is, the 

adaptation map can be used to prepare a plan for actions to be taken immediately (anticipatory and 

concurrent), and for preparations that need to be made in order to be able to implement an action in the 

future in case conditions change (reactive). 

Figure 3. An example of an adaptation pathway map [45]. Starting from the current 

situation, targets begin to be missed after four years. Following the grey lines of the current 

policy, one can see that there are four options that can be implemented after this point. 

Actions A and D should be able to achieve the targets for the next 100 years in all climate 

scenarios. If Action B is chosen after the first four years, a tipping point is reached within 

five years; a shift to one of the other three actions will then be needed to achieve the targets 

(follow the orange lines). If Action C is chosen after the first four years, a shift to Action A, 

B, or D will be needed in the case of Scenario X (follow the solid green lines). In all other 

scenarios, the targets will be achieved for the next 100 years (the dashed green line). 

 

The ATP approach was first applied to water management in the Netherlands in 2011. Although the 

ATP approach is relatively new, it has been used in several other studies, such as flood risk 

management in the city of Rotterdam [52], nature restoration in the Rhine basin and wine production in 

Italy [53], risk management in New Zealand [54], and risk management in the Elbe basin [55].  

The adaptation pathways approach was extensively tested using a hypothetical case called  

“the Waas” [45,56–58]. Practical examples of the ATP and AP approach include the UK Thames 

Barrier project [50,59,60] and the Dutch Delta Programme [50,59]. For New York City, an approach is 

being developed called “flexible adaptation pathways” [61], which shares a strong family resemblance 

with both the AP approach and Holling’s work on adaptive management [62,63]. Both ATP and AP 

approaches have also been used to explore socially robust strategies using the Perspectives  

method [45,64]. 

2.5. Dynamic Adaptive Policy Pathways (DAPP) 

The Dynamic Adaptive Policy Pathways (DAPP) approach [65] combines the work on Adaptive 

Policymaking with the work on Adaptation Tipping Points and Adaptation Pathways. Figure 4 shows 

the overall approach. 

Current policy

Action A

Action B

Action C

Action D

0 10 70 80 90 100

Transfer station to new action

Adaptation Tipping Point of an action (Terminal)

years
Action effective in all scenarios

Action not effective in scenario X
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Figure 4. The Dynamic Adaptive Policy Pathway approach [65]. 

 

As in the other approaches, the DAPP approach begins with the identification of objectives, 

constraints, and uncertainties that are relevant for decisionmaking. The uncertainties are then used to 

generate an ensemble of plausible futures. These futures are compared with the objectives to see if 

problems arise or if opportunities occur. This determines if and when (reactive) policy actions  

are needed. To assemble a rich set of possible actions, the approach distinguishes among four types of 

actions, which are defined in the same way as in APM: shaping actions, mitigating actions, hedging 

actions, and seizing actions [36]. In subsequent steps, these actions are used as the basic building 

blocks for the assembly of adaptation pathways. The performance of each of the actions and pathways 

is assessed in light of the defined objectives to determine its adaptation tipping point. Once a set of 

actions seems adequate, potential pathways (a sequence of actions) can be constructed, and 

subsequently one or more preferred pathways can be selected as input for a dynamic robust plan.  

The aim of this plan is to keep the preferred pathway open as long as possible. For this purpose, 

contingency actions are specified and a trigger for each contingency action is specified and monitored. 

This approach is being tested on a fictitious case [56], and is being applied in a real case involving the 

Lower Rhine Delta of the Netherlands [66]. 

3. Computational Support Tools for Designing Sustainable Plans 

Often, analysts use simulation models to quantitatively explore various futures (e.g., [67–69]). 

Within this school of computational scenario-based approaches, it is common to use a small set of  

(two to four) scenarios for one or two projection years to design (static) robust plans (plans that will do 

well no matter which of the scenarios actually occurs) (e.g., [70,71]). In the context of supporting 
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adaptive planning, this computational scenario-based approach can be further extended. In this section, 

we discuss several aspects that are of relevance for the use of computational scenario-based 

approaches for supporting the design of sustainable plans using the approaches described in Section 2. 

3.1. Fast and Simple Policy Models 

Models come in many shapes and sizes. A useful distinction can be made between policy models 

and scientific models. Scientific or engineering models aim at obtaining a better understanding of a 

well-defined clearly demarcated system. The better the match between the model and the real world, 

the better the model is considered to be (a close match implies a valid model). Policy models give 

policymakers insights into their (future) problem situation on which they can base their decisions [72]. 

Policy models serve as laboratory environments, to test alternative policies, and compare their 

performance without actually having to implement them in the real world to see how they  

would perform. The main purpose of models to support the development of sustainable plans is similar 

to that of a policy model—to assess a large number of alternative actions under different possible 

futures, and to design adaptation pathways. In this case, the main purpose of the model is not to 

provide the solution, but to provide information supporting decisionmakers. 

Given the fact that models for developing sustainable plans require the evaluation of alternative 

actions over a wide variety of plausible futures, an additional requirement of these models is that they 

have a relatively short runtime. There are various ways in which such models can be developed, 

including meta-modeling and the use of modeling approaches that result in relatively fast models. 

Meta-models are models of models, intended to mimic the behavior of larger, more complex models. 

Such models are also known as “low resolution models”, “repro models”, or “response surfaces”.  

There are two ideal types of meta-models: statistical and theory based. Often, however, actual  

meta-models are a mixture of these ideal types, motivated by phenomenological  

considerations [73,74]. 

Designing a policy model is a balancing act between model completeness (in terms of considering 

all policy-relevant components), model credibility (in terms of physical detail and validity),  

and flexibility and calculation time of a simulation. To make the model manageable, simplifications in 

time scale, spatial scale, and processes are needed. A complex model can subsequently be used to 

obtain more detailed information about the performance of the most promising options resulting from 

the policy exploration. 

Another requirement for policy models follows from the need to cover a wide variety of outcome 

indicators. We need models that not only focus on a part of the system, but include enough of the 

system relationships to be able to estimate all relevant outcome indicators. Therefore, these models 

should be integrated impact assessment models. An example of such a policy model that has been used 

in demonstrating the AP approach is the integrated assessment meta-model of the Waas case study [45]. 

This model is what Welsh et al. [75] call a “new generation model”. They argue, with respect to water 

management, that “with the increasing complexity of water management, sectorial applications, such 

as separate groundwater and surface water models, are becoming outdated and that water managers are 

increasingly looking for new generation tools that allow integration across domains to assist in their 
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decisionmaking processes for short-term operations and long-term planning; not only to meet current 

needs, but those of the future as well”. 

3.2. Exploratory Modeling and Analysis (EMA) 

Exploratory Modeling and Analysis (EMA) is a research methodology that uses computational 

experiments to explore uncertainties in the context, the system model, and different  

perspectives [76–79]. EMA begins by acknowledging the fact that a validatable predictive long-term 

policy model cannot be built [80,81]. It then asks the question “in that case, how can we still use our 

model?” [82]. As noted above, in situations with deep uncertainty, relying on a “best estimate” model 

to predict system behavior can result in the choice of a very poor plan. Therefore, rather than 

attempting to predict system behavior, EMA aims to analyze and reason about the system’s  

behavior [76], for example by using several plausible models of the system. 

EMA supports this process of researching a broad range of assumptions and circumstances.  

In particular, EMA involves exploring a wide variety of scenarios, alternative model structures, and 

alternative value systems. The exploration is carried out using computational experiments.  

A computational experiment is a single run with a given model structure and a given parameterization 

of that structure. It reveals how the real world would behave if the various hypotheses presented by the 

structure and the parameterization were correct. By exploring a large number of these hypotheses, one 

can get insights into how the system would behave under a large variety of assumptions. In published 

examples the number of hypotheses vary, but are between roughly 10 [83] and 60 [84]. 

To support the exploration of these hypotheses, data mining techniques for analysis and 

visualization are employed. EMA aims to “cover the space” of possibilities, which can be described as 

the space being created by the uncertainty surrounding the many variables. Because each model run is 

treated as a deterministic hypothesis about the system of interest, EMA does not require the a priori 

assignment of likelihood or probability to uncertainty variables.  

In EMA, relatively fast and simple computer models of the system are applied. Because EMA aims 

to cover the whole space of possibilities, it is usually necessary to make huge numbers of computer 

runs (thousands to hundreds of thousands). With traditional best estimate models this would take too 

much time. With fast and simple policy models, one can cover the entire uncertainty space, and then 

drill down into more detail where initial results suggest interesting system behavior (e.g., the boundary 

between a plan’s success and failure). EMA has been used to support applications of APM and DAPP. 

3.3. Scenario Discovery 

Scenario Discovery is a model driven approach based on the intuitive logic school [83] that builds 

on earlier work on EMA [76,85]. It starts from an ensemble of model runs that is analyzed in order to 

identify runs that are of particular interest. Next, these runs of interest are analyzed to reveal the 

combinations of factors responsible for generating them. These combinations of factors are called 

“scenarios”. (In this case, “scenarios” does not have its traditional meaning as a set of plausible future 

external contexts in which a plan might need to function.) Results of interest can be identified based on 

the performance of candidate plans, but other criteria can also be used. Scenario Discovery has 

recently been extended to cope with dynamics over time [84] and multiple outcomes of interest [86]. 
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In many applications of Scenario Discovery, the runs of interest are determined based on the failure 

to meet pre-specified objectives. The mindset behind Scenario Discovery is one of the most important 

defining differences between traditional ex-ante policy analysis and the analysis underlying the design 

of robust plans. In the former, scenarios would be specified and plans would be evaluated on how well 

they performed across the scenarios. The “best” (static robust) plan would the one that performed the 

best across all of the scenarios. In contrast, Scenario Discovery is performed to identify the scenarios 

in which a plan would perform poorly. These scenarios highlight the vulnerabilities of the plan.  

Then, actions are specified to protect the plan from failing. APM, RDM, and DAPP all can use 

Scenario Discovery to identify combinations of external events or situations that would lead to the 

failure of the plan being investigated (i.e., the “perishing” of the plan). 

Scenario Discovery has been applied to various cases. Bryant and Lempert [83] apply it to 

renewable energy in the United States. Groves and Lempert [25] report on an application for water 

resource management in California. Kwakkel et al. [84] apply dynamic Scenario Discovery to material 

scarcity. Gerst et al. [86] apply multi-dimensional Scenario Discovery to an energy transition case.  

3.4. Robust Optimization 

Optimization is a very popular tool for supporting decisionmaking. Optimization can be defined as 

trying to find the best solution among a set of possible alternatives without violating certain 

constraints. It is mostly employed for predictive purposes, where the aim is to identify a single best 

estimate solution. However, under deep uncertainty, this predictive approach cannot be used for 

decisionmaking, since usually an optimum solution does not exist [87,88]. Robust optimization aims to 

overcome this difficulty. Robust optimization methods aim at finding optimal outcomes in the 

presence of uncertainty about input parameters [89–92]. 

Robustness can be operationalized in a wide variety of ways. Rosenhead et al. [88] understand 

robustness as flexibility—that is, as leaving options open. Other ways of operationalizing robustness 

include Wald’s minimax criterion, which chooses the decision alternative that minimizes the maximum 

risk [93]; minimax regret [94], which results in choosing the solution with the least maximum  

regret [5]; and various forms of satisficing [95], such as risk discounting, and certainty  

equivalents [88]. EMA can be combined with robust optimization in a number of ways: robustness can 

be defined as the first order derivative of the objective function [8]; as a reasonable performance over a 

wide range of plausible futures [15,43]; as regret [5,96]; and as sacrificing a small amount of optimal 

performance in order to be less sensitive to violated assumptions [15]. This last definition bears a large 

similarity to the local robustness model employed in Info-Gap decision theory [27,97]. 

Along a different dimension, a distinction can be made between single-objective optimization and 

multi-objective optimization. In the single objective optimization case, multiple objectives are 

combined, drawing on Multi-Criteria Decision Analysis (MCDA) approaches [98]. In the  

multi-objective case, one aims at identifying the Pareto frontier, leaving discussions about tradeoffs 

among the various objectives out of the optimization. 

Examples of the application of robust optimization in support of adaptive policymaking can be 

found in Hamarat et al. [43] on energy transitions, and Kwakkel et al. [96] on long-term airport 

planning. Kwakkel et al. [56] combine robust optimization and Dynamic Adaptive Policy Pathways for 
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the development of a long-term water management adaptation strategy in response to climate change 

and socio-economic uncertainty.  

3.5. Info-Gap 

An information gap is defined as the disparity between what is known and what needs to be known 

in order to make a reliable and responsible decision. Info-Gap decision theory is a non-probabilistic 

decision theory that seeks to optimize robustness to failure—or opportunity for windfall—under 

“severe uncertainty” [97,99]. The theory underlying Info-Gap was initially developed by Ben-Haim in 

the context of the reliability of mechanical systems [97,99] Increasingly, it is also being applied to 

support the development of robust plans. Info-Gap starts with a set of available actions and evaluates 

the actions computationally. It can, therefore, be considered as a computational support tool (although 

it could also be categorized as an approach for robust decisionmaking). In contrast to the other 

approaches considered in this paper, unforeseen events (Black Swans) are not incorporated: Info-Gap 

addresses modeled uncertainty, not unexpected uncertainty. 

Info-Gap analysis uses a non-probabilistic model of the uncertainty encountered in the decision 

problem, a policy model to evaluate the effects of alternative actions given the uncertainty, and a 

specification of minimum performance requirements that an action should satisfy [27]. In contrast to 

Scenario Discovery, where actions can be developed iteratively, Info-Gap assumes that the actions are 

known prior to the analysis [27]. It then proceeds to evaluate how large the uncertainty should become 

before a given action fails to meet its specified performance requirements. In this analysis, both the 

robustness and the “opportuneness” of strategies is evaluated. Robustness is the minimum performance 

above the threshold for a given level of uncertainty. Opportuneness is the maximum level of 

performance above the threshold for a given level of uncertainty [27]. The main results from an Info-

Gap analysis are a visualization of the robustness and opportuneness of different actions as a function 

of the level of uncertainty. Recently, Hall et al. [27] presented a quantitative comparison of RDM and 

Info-Gap. They identified many similarities, such as the multiple plausible representations of 

uncertainty and the use of quantified system models. 

Info-Gap theory has been applied in a range of practical applications, including the reduction of 

greenhouse gasses [27], flood risk [100,101], biological conservation [102], and water resources 

planning [103]. 

4. Discussion 

In this paper, we have provided an overview of one family of approaches to adaptive planning—

those that have their roots conceptually in Assumption-Based Planning—and tools used to support 

these approaches computationally. Comparing the approaches, we note both commonalities and 

differences. All approaches represent uncertainties with sets of multiple plausible futures instead of 

probabilities over future states of the world. The way Exploratory Modeling and Analysis is used in 

combination with Adaptive Policymaking explicitly includes uncertainties arising from simulating the 

real world in a system model. What is considered a “plausible” future is subject to different 

interpretations, and depends on one’s expectations about the future and understanding of the system. 

Moreover, what is considered acceptable performance of a policy depends on people’s values.  
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A concept called “Perspectives” has been used to describe people’s dynamic view of the value of water 

and how water should be managed [64,70,104,105]. Recently, the Scientific Council for Government 

Policy in the Netherlands requested attention for including such uncertainties in scenario studies [106]. 

Adaptation Tipping Points and Adaptation Pathways have been used in combination with the concept 

of Perspectives to explore uncertainties arising from different values and expectations about the  

future [45,64,107]. The use of Perspectives not only enables the identification of physically robust 

pathways, but also socially robust pathways. 

All approaches aim at enhancing a plan by keeping it from failing. All approaches include (some 

more explicit then others) the question: what could make a plan fail? For example, in defining 

adaptation tipping points, this question is rephrased into: under what conditions does a plan perform 

unacceptably? Adaptive Policymaking explicitly distinguishes different types of actions to keep a 

policy from failing. Such actions can result from the last three steps in Robust Decision Making. Both 

Adaptive Policymaking and Robust Decision Making have similar first steps, and go back one step in 

policymaking compared to the Assumption-Based Planning approach. They do not assume that a plan 

exists, but begin by first designing the plan to be examined. Robust Decision Making differs from 

Adaptive Policymaking, Adaptation Pathways, and Dynamic Adaptive Policy Pathways in not 

explicitly considering the dynamic adaptation of the plan over time, while the other three place 

increasing emphasis on this aspect. That is, the last three approaches produce dynamic robust plans 

(covering anticipatory, concurrent, and reactive adaptation), while Robust Decision Making produces a 

static robust plan (focusing on anticipatory adaptation). 

Looking at the family of adaptive planning approaches, we note several recurring “principles” for 

planned adaptation. The essential idea of planned adaptation is that planners facing deep uncertainty 

create a shared strategic vision of the future, explore possible adaptation strategies and pathways, 

commit to short-term actions, while keeping long-term actions open, and prepare a framework 

(including in some cases a monitoring system, triggers, and contingency actions) that guides future 

actions. Implicit in this is that planners accept the irreducible character of the uncertainties about the 

future and aim to reduce uncertainty about the expected performance of their plans. So, planners have 

to accept—and in a sense embrace—uncertainty, rather than spending large amounts of time and effort 

on trying to reduce it, and waiting to take action until the uncertainties have been resolved. 

In order to develop dynamic robust plans, planners have to explore a large variety of futures to 

assess what actions can be used to achieve their objectives despite how the future unfolds. This is 

realized by connecting long-term objectives with short-term targets. It necessitates the analysis of 

actions over time, rather than looking only at future states of the world. Adaptivity and the avoidance 

of lock-ins are necessary conditions to achieving the objectives no matter how the future unfolds. 

Adaptivity includes the pre-specification of contingency actions and the monitoring of developments 

over time in order to activate the contingency actions if and when needed. It is conceivable that, 

despite the thorough exploration of the future, events or developments occur that have not been 

considered or are so extreme that a reassessment is needed. The conditions for this can be explicitly 

made part of the plan. Adaptation can, therefore, keep a plan alive and prevent the policymaker’s 

vision from perishing. 

Figure 5 is a map of the discussed approaches for developing adaptive policies according to the 

level of uncertainty that they address and the type of adaptation concept being used by the approach. 
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Static means that timing is not explicitly considered. Static robust means that the adaptation is 

primarily anticipatory in character. Dynamic means that the adaptation can be anticipatory, concurrent, 

and reactive. The level of uncertainty specifies the degree of uncertainty. It can range from low, well 

characterized uncertainty, to deep uncertainty, and even recognized ignorance [4,6,108]. 

Assumption-Based Planning covers static robustness, since it analyzes the critical assumptions of an 

existing plan, but does not continue to be used to cope with changes in the world. Robust Decision 

Making no longer requires an existing plan, but still aims at developing a static plan rather than a 

dynamic plan. Adaptive Policymaking makes clear the importance of monitoring and adapting to 

changes over time to prevent the basic (static) plan from failing. Adaption Tipping Points can be 

categorized as static, since it specifies the conditions and time frame under which a new or an 

additional management strategy is needed. It is most useful in helping to identify vulnerabilities in the 

system and where actions may needed to be taken first. More information about timing is added in the 

Adaptation Pathways concept, producing a more dynamic approach. Dynamic Adaptive Policy 

Pathways includes both the pathway idea and the contingency planning concepts from Adaptive 

Policymaking. Both of these approaches provide support to identifying options and vulnerabilities of a 

plan over time, and are, therefore, well suited for situations that are apt to undergo relatively frequent 

large changes. In practice, of course, there is a great deal of overlap among the approaches, and the 

differences may not be as clear as shown in Figure 5. 

Figure 5. A map of the approaches for developing adaptive policies according to their 

dynamics and level of uncertainty. 

 

The various planning approaches can be supported by computer models. This does not imply that 

other techniques, such as qualitative scenarios, backcasting [109], Delphi [110], etc., do not also have 

their place in the adaptive planner’s toolbox. Especially in developing countries, data to feed 

computational tools can be scarce. In the literature, the approaches we have discussed are most often 

combined with computational techniques to support the development of adaptive plans. This is clearest 
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for Robust Decision Making, which is almost completely dependent on computer runs. However, all 

approaches emphasize and require relatively fast and simple policy models. This is motivated by the 

fact that there is a need to explore a wide variety of uncertain futures and actions. Scenario Discovery, 

Robust Optimization, Info-Gap, and fast and simple policy models work together well. The reliance on 

fast simple models is consistent with the adage that it is better to be roughly right than precisely wrong. 

For the types of problems we are addressing, the level of uncertainty typically swamps the increased 

precision of more detailed models. This does not imply that more detailed models do not have their 

place in the adaptive planning process. Once there is an emerging consensus on a dynamic robust plan, 

more detailed models can be used to further detail this plan. Through Scenario Discovery, the crucial 

scenarios can be identified in order to maximize the effective use of the computational resources. 

5. Concluding Remarks 

“Monitor and adapt” is gradually becoming preferred to “predict and act” as the strategy for  

long-term planning in the face of deep uncertainty—i.e., as a means to design sustainable plans that are 

able to achieve economic, environmental, and social objectives for a long-term uncertain future.  

To this end, a sustainable plan should be robust, meaning that it performs satisfactorily under a wide 

variety of futures and can be adapted over time to (unforeseen) future conditions. There are different 

approaches for developing sustainable plans, but with some similar elements. To date, few formal 

comparisons of these approaches exist. We have provided a first attempt at comparison, focusing on 

tools and approaches that have their roots in Assumption-Based Planning and that can be used to 

design a sustainable plan under deep uncertainty. Further work needs to be done on the systematic 

comparison of approaches and computational tools to assist decisionmakers and planners in choosing 

among and employing these approaches more effectively. Recently, Hall et al. [27] made a start to 

address these issues by applying Robust Decision Making and Info-Gap on the same case and 

comparing the results.  

Based on our work, we have found that key principles in developing long-term sustainable plans are: 

 Explore a wide variety of relevant uncertainties in a dynamic way. That is, uncertainties in 

natural variability, external changes, and policy responses need to be explored over time.  

For example, climate change may affect precipitation, resulting in floods and droughts, which 

may initiate a policy response (e.g., dams and dikes) that may affect the water system, initiate 

urban developments, and influence future policy options.  

 Connect short-term targets and long-term goals. 

 Commit to short-term actions while keeping options open for the future. 

There is evidence that such policies are efficacious [96] and cost-beneficial [111]. As a means for 

computational support, fast and simple policy models are used in order to explore a wide variety of 

uncertainties and actions in a dynamic way. For such an analysis, computational experiments, such as 

in Exploratory Modeling and Analysis and Scenario Discovery, are used. These approaches are 

beginning to be used in practice (e.g., the Thames Estuary in the UK, the Rhine-Meuse delta in the 

Netherlands, the Port of Los Angeles and New York City in the USA). However, more needs to be 

done to bridge the gap between theory and practice in order to produce plans that adapt and lead to 

survival, not perishing.  
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