How might climate change affect forest growth and what can we do about it?

Caren Dymond November 7, 2017

Ministry of Forests, Lands, Natural Resource Operations and Rural Development

Acknowledgements

Collaborators (alphabetical):

- Sarah Beukema
- Dave Coates
- Anouschka Hof
- David Mladenoff
- Craig Nitschke
- Robert Scheller

Support and advice from:

- Werner Kurz, Canadian Forest Service
- Bill Golding, Forest Manager for the Wetzin'kwa Community Forest, and
- Dave Duncan & Marie-Lou Lefrancois, BCTS Babine

Funding from BC Government Natural Resources Sciences Program.

Year

Scope

Identifying climate change impacts on a managed landscape.

Assess how can this information help us manage our forests in the future?

- Timber supply
- Carbon
- Species composition

All models are wrong, some models are useful. ~G.E. Box

.... And I'm not a wizard...

 \sim C.C.Dymond

Why do we care about forest carbon?

Climate change is forcing us

- Concerns about CO₂ build up in the atmosphere.
- Questions about the role of BC forests and forest sector in affecting atmospheric GHG concentrations.
- Changing social license to operate.
- New questions for resource managers.
- New opportunities for business.

Part 1: Contrasting climate change effects in the temperate forests of northwestern British Columbia

Copper-Pine Creek study area

Modelling regions

Region number	Dominant species	Mean annual temp (C)	Mean annual precipitation (mm)	Fire return interval
3	Englemann spruce – Subalpine fir	1.4	1081	700
7	Pine – Aspen - Spruce	3.1	521	200

Methods

- Simulation model of forest ecosystem 2012 2050.
- Aggregation/ensemble of climate change projections (5 different possible futures).
- Scenarios:
 - No climate change
 - Average productivity
 - High productivity average plus 1 standard deviation
 - Low productivity average minus 1 standard deviation

Forest landscape simulation

- LANDIS-II → spatial dynamic forest landscape simulation model including the Forest Carbon Succession extension.
 - Carbon stocks and fluxes are tracked over time
 - Harvest and planting regimes
 - Fire dynamics
 - 2012 2050

Credibility

- Biomass dynamics at a "stand-scale" checked by local experts & compared with TIPSY.
- Carbon stocks and fluxes compared with published values.

Results – landscape average productivity

Results – landscape average aboveground biomass

- ---- No climate change baseline
- Average productivity
- --- High productivity
- --- Low productivity

Results – Carbon Balance

- No climate change baseline
 Average productivity
- --- High productivity
- --- Low productivity

Results – Carbon balance = Net Biome Productivity

Results – whole landscape

Aboveground biomass

- No climate change
 Average productivity
- --- High productivity
- --- Low productivity

Net Sector Productivity = NPP

- Rh
- disturbance emissions
- HWP emissions

Mitigation and Adaptation Opportunities

- Add warmer-climate species to Region 7 Pine Aspen – Spruce.
 - e.g. Douglas-fir
- Possibly increase harvest rate in Region 3
 Spruce Subalpine fir.

Summary

- Ensemble average: Lower productivity areas improved as carbon sinks.
 - But it was not enough to counter the poorer outcomes for carbon sinks & sources higher productivity areas.
 - Species moving away or toward optimum conditions.
- Large risk how can we manage?
- Phase 2 management options

For more information:

Carbon sequestration in managed temperate coniferous forests under climate change www.biogeosciences.net/13/1933/2016/

Questions/poll

- Given these different effects of climate change, what forest management options would you like assessed?
 - Partial harvesting
 - Shorter rotations
 - Longer rotations
 - Different planting regimes

Part 2: Testing novel planting regimes to adapt and mitigate climate change

Climate change mitigation strategies

- Adaptation of forest management:
 - Positive
 - Negative
- Planting alternative tree species:
 - Effects on carbon pools largely unknown
 - Carbon storage depends on tree species

Aim

- Simulating the impacts of different planting regimes and climate change scenarios on:
 - Carbon pools
 - Carbon sinks/sources
 - Tree species diversity
 - Harvest levels

How can we manage natural risks?

- Ecological resilience theory
- Resilience: "the capacity of a system to absorb disturbance and reorganize while undergoing change so as to still retain essentially the same function, structure, identity, and feedbacks." Walker et al. 2004
- Ecological resilience and complexity: a theoretical framework for understanding and managing British Columbia's forest ecosystems in a changing climate
- Campbell et al. 2009

Resilience & Species diversity

- Insurance hypothesis:
 - Greater species diversity reduces the impacts of disturbances.
 - Increases and buffers productivity.

Study region

- Copper-pinecreek: 734 km²
- Dominated by coniferous trees
- Largely unharvested
- Mostly > 100 years old
- Transition zone: coastal and continental climates meet
- 5 distinct modelling regions

Forest landscape simulation

- LANDIS-II → spatial dynamic forest landscape simulation model including the Forest Carbon Succession extension:
 - Carbon stocks and fluxes are tracked over time
 - Harvest and planting regimes
 - Fire dynamics
 - Mountain pine beetle
 - **2014 2114**

Planting regimes

Planting strategy	Region 3 & 4 Englemann spruce – Subalpine fir	Region 5 Lodgepole pine	Region 6 Subalpine fir – Western hemlock	Region 7 Pine – Aspen - Spruce
Climate change adapted stocking standards (SS)	hybrid spruce, subalpine fir	hybrid spruce, lodgepole pine	hybrid spruce, western hemlock, subalpine fir	hybrid spruce, lodgepole pine, Douglas fir, western larch
Add Douglas fir (DF)	SS	SS + DF	SS + DF	SS
Add lodgepole pine (LP)	SS + LP	SS	SS + LP	SS
Add ponderosa pine (PP)	SS	SS + PP	SS + PP	SS + PP
Add western larch (WL)	SS	SS + WL	SS + WL	SS
Diversification	SS + DF, LP, whitebark pine	SS + subalpine fir, western hemlock, black spruce	SS + DF, LP, WL, western redcedar	SS + subalpine fir, black spruce

Climate change scenarios

Affect tree productivity depending on species and modelling region:

- Baseline historical climate
- Hotter and wetter (HADCM3 A1B)
- Warmer, about the same precipitation (CGCM3 A2)
- Hotter and drier (HADGEM A1B)

Results: Leading species under Stocking standards

Stocking standards vs. Diversification

Year 100 Stocking standards Year 100 Diversification **Dominant species** Paper birch Black spruce Amabilis fir Subalpine fir Trembling aspen Douglas fir Lodgepole pine Western hemlock Whitebark pine Black cottonwood Interior spruce Western larch 15 km 7.5 7.5 15 km

Ν

Species diversity

Productivity per climate scenario

Planting regime affect on biomass

Planting regime affect on harvest

36

Planting regime affect on carbon balance

Conclusions

- Future productivity depends largely on the climate scenario.
- Current stocking standards are not optimal for the indicators measured.
- Diversification planting regime had higher resilience for most ecosystem services.
- Expanded planting lodgepole pine appears good alternative, but high risk mountain pine beetle, snowfall, rusts, etc.

Next steps

- Economic analysis of planting scenarios.
- Silviculture affects on forest carbon stocks (Date Creek Experimental Forest).

Thanks!

- Caren Dymond
- <u>Caren.Dymond@gov.bc.ca</u>
- 778-747-2727

For more information:

Carbon sequestration in managed temperate coniferous forests under climate change www.biogeosciences.net/13/1933/2016/

Climate change mitigation through adaptation: the effectiveness of forest diversification by novel tree planting regimes Anouschka Hof, Caren Dymond and David Mladenoff Ecosphere 2017

Ministry of Forests, Lands, Natural Resource Operations and Rural Development

