Using Climate Data & Models in Forest Management

Climate Risk Institute Webinar

Molly Hudson RPF, RPBio David Beleznay RPF, PEng Ben Paquette-Struger, PhD Candidate

March 2, 2023

Outline

MOSAIC FOREST MANAGEMENT

- ✓ Company introduction
- Context: why invest in climate planning?
- ✓ Mosaic approach overview
- Adaptation focus: Climate data and modelling
- Mitigation focus: Carbon storage

Introduction to Mosaic

Canada's **largest private timberland** producer, over 2000 people employed in our operations

MOSAIC

FOREST MANAGEMEN

We are responsible for **forest planning**, **operations** and **product sales**

Our owners are BC and federal **pension funds**

We have private managed forest lands – predominantly second growth

We also manage multiple **public licenses** on public lands.

SFI®, PEFC, ISO14001 certified

Climate Solutions Strategy

Potential Climate Change Impact	Description	Current Vulnerability L, M, H	Future Vulnerability L, M, H	Con	siderations/ Challenges	Adaptive Capacity L, M, H	Adaptation Priority L, M, H	Adaptation Practices – Currently Underway	Adaptation Practices - Future Considerations (Identified Priorities in Blue)
ENVIRONMENTAL									
Extreme Weather Events	Change in average temperatures. Increase in extreme heat.	M-H	Н	Adaptation Already o	Mosaic Vulnerabil	ity	Н	Watershed assessments Water Purveyor Engagement	Research/ monitoring ground water etc. Consider evapotranspiration modelling
5	Mosaic Forest Manageme	ent			Assessme	nt			

Past and ongoing work

Mitigation Initiatives: Actions to reduce or remove GHG's from the atmosphere to prevent significant adverse effects

- GHG Supply Chain Footprint (scope 1, 2, and 3) and sciencebased targets for net zero
- Wildfire prevention (Security, partnerships, training)
- Reducing emissions (electrification, logistics, chipping)
- Carbon storage in old forests (BigCoast) and through thinning

Adaptation Initiatives: Actions meant to reduce or compensate for or adapt to adverse impacts that arise to changes in climate

- Tree improvement
- Silvicultural adjustments
- Infrastructure improvements
- Watershed assessments and collaborative research
- Soil management
- Advanced weather station network

Current New Initiative: Modelling

- Incorporate into Enterprise Risk Management
- ► Communication and engagement focus, including contractor community
- ► Regional climate modelling

Objectives of regional climate modelling:

- Support the overarching goal of assessing current and future forest operations vulnerabilities using the best resources available for coastal BC

- Inform decision-making with respect to mitigation and adaptation opportunities

Use readily available climate tools/data to produce custom climate projections, figures, and reports for 4 different Mosaic operational zones

- Assist with current and future climate-focused certifications and planning (e.g., operational and structural adaptation)

Differences between predicting weather and climate:

WEATHER:

- The conditions you actually get
- e.g., What you <u>actually wear</u> in the field that day

WEATHER FORECASTS:

Attempt to create precise and singular *hour-by-hour predictions* of weather on a small spatial scale

CLIMATE:

- The weather you expect, given the time of year (Climate Normal is 30 years)
- e.g., The type of field-gear you <u>own</u>

CLIMATE MODELS:

Combine <u>MANY simulations of</u> <u>possible weather</u> to produce an integrated picture of what average/extreme conditions might look like in the future, over larger regions

Weather and Climate Differences:

MOSAIC

MANAGEMENT

FOREST

Mosaic Weather Station Network

MOSAIC FOREST MANAGEMENT

Mosaic1Forest Management

Mosaic Weather Station Data:

CENTRAL ISLAND STATIONS: 0:00 November 13 th – 23:00 November 15 th , 2021						
STATION	TOTAL RAINFALL	MAX. WINDSPEED	AVG. WINDSPEED			
	(mm)	(km/h)	(km/h)			
Arrowsmith	130.2	97.4	28.56			
Ash Lower	81.4	34.0	2.03			
Buckley	89.6	56.3	7.51			
Cameron Yd	162.8	69.0	6.47			
Elsie	87	35.1	4.31			
Lacey	115.8	41.9	8.17			
Museum	162.9	78.9	8.84			
NWB155	123.9	44.2	6.44			

SOUTH ISLAND STATIONS: 0:00 November 13 th – 23:00 November 15 th , 2021						
STATION	TOTAL RAINFALL	MAX. WINDSPEED	AVG. WINDSPEED			
	(mm)	(km/h)	(km/h)			
16 Creek	235.46	41.91	6.37			
Chemainus	183.9	64.8	10.71			
First Lake	161.3	32.46	2.36			
Harris Creek	225.1	61.88	8.80			
K43	238.26	64.56	8.12			
Ladysmith	186.44	37.26	2.89			
McKay	221.23	48.76	6.25			
Muir Creek	215.65	49.04	8.8			
NANRvr	165.2	29.5	3.88			
Nitnat	209.8	35.77	2.81			
RDN	149	48.2	7.82			
Rheinhart	234.4	67.5	7.2			
San Juan	242.3	60.75	7.31			
Shawnigan	189.1	46.6	5.65			

veage 16x2/9 Time dulids; 2021/1115-08x10m

MOSAIC FOREST MANAGEMENT

Topographical Effects on Vancouver Island, BC:

MOSAIC FOREST MANAGEMENT

Olympic Mountains: Washington State

Climate vulnerabilities of forest operations:

Changes in <u>AVERAGE</u> conditions, over time

- Average weather conditions at a given place
- Climate Normals (30-year average)
- e.g., Average monthly rainfall/ temperature

Changes to the intensity and frequency of *EXTREME* events, over time

- Rare occurrences of unusually severe weather at given place
- e.g., Size, frequency, and severity of drought/rain events
- e.g., Calculation of return-periods

Climate vulnerabilities of forest operations:

Changes in <u>AVERAGE</u> conditions, over time

Changes to the intensity and frequency of *EXTREME* events, over time

Climate vulnerabilities of forest operations:

Regional Projections:

MOSAIC FOREST MANAGEMENT

North Island/Mainland:

Modelling Key Points

- 4 different regions
- 3 different time periods
 - ▶ 1981-2010, 2011-2039, 2040-2069
- Best model for western Canada selected
 - ► CanESM2
- Most likely climate scenario selected
 - ► RCP 4.5
- Crucial operational climate information was provided by the Climate Solutions Team
 - Culvert, bridge, and road design
 - Wet weather shutdown, flooding, and storm water
 - ► Fire risk and shutdown
 - ▶ Terrain, watersheds, and soil
 - Forest health
 - Growth and yield
 - Seedling health and planting management

Central Island:

Southwest Island:

Southeast Island:

2046

Changing Climate

MOSAIC FOREST MANAGEMENT

Wetter winters

Maximum 1-day precipitation:

19

Precipitation as snow:

Mosaic Forest Management

20

Regional Projection "Snapshots":

MOSAIC FOREST MANAGEMENT CENTRALISLAND:

PRECIPITATION VARIABLE	SEASON	MEAN VALUE (PROJECTED PERCENT CHANGE FROM 1981-2010 BASELINE)			
		<u>1981-2010</u>	<u>2010 - 2039</u>	<u>2040 - 2069</u>	
Precipitation at ground level (mm/day)	Annual	4.9	5.1 (+3.9%)	5.2 (+6.1%)	
	Summer	1.7	1.3 (-23.2%)	1.0 (-37.5%)	
	Winter	8.0	8.5 (+5.2%)	9.0 (+12.6%)	
Annual total precipitation in wet days (mm)	Annual	1779.4	1882.8 (+5.8%)	1943.9 (+9.2%)	
Precipitation as snow (kg/m²/day)	Fall	0.22	0.19 (-13.6%)	0.23 (+4.5%)	
	Winter	1.2	0.64 (-47.1%)	0.38 (-68.6%)	
	Spring	0.43	0.31 (-27.9%)	0.16 (-62.8%)	
Annual count of days with at least 20 mm of precipitation (days)	Annual	24.4	26.9 (+10.2%)	28.4 (+16.4%)	
Annual total precipitation when daily precipitation exceeds the	Annual	379	506 (+33.5%)	540 (+42.5%)	
95 th percentile of wet day precipitation (mm)					
20-year annual maximum 1-day precipitation amount (mm)	Annual	89.3	102.2 (+14.4%)	109.4 (+22.4%)	
50-year annual maximum 1-day precipitation amount (mm)	Annual	96.9	112.4 (+15.9%)	141.4 (+45.9%)	
5-year annual maximum 1-day precipitation amount (mm)	Annual	75.5	84.5 (+11.9%)	77.9 (+3.1%)	
Maximum 1-day precipitation (mm)	Annual	65.1	77.7 (+19.4%)	79.8 (+22.6%)	
Maximum 5-day precipitation (mm)	Annual	144.2	158.3 (+9.8%)	161 (+22.6%)	
Maximum number of consecutive days with less than 1 mm of	Annual	22	23.7 (+7.8%)	27.9 (+26.6%)	
precipitation (mm)					

TEMPERATURE VARIABLE	SEASON	MEAN VALUE (PROJECTED CHANGE FROM 1981-2010 BASELINE)		
		<u>1981-2010</u>	<u>2010 - 2039</u>	<u>2040 - 2069</u>
Frost days (days)	Annual	91.7	57.2 (-37.6%)	38.9 (-57.6%)
Growing degree days (days)	Annual	1650.7	2001 (+21.3%)	2260 (+36.9%)
Growing season length (days)	Annual	234.7	266 (+13.2%)	287 (+22.1%)
20-year annual maximum daily maximum temperature (°C)	Annual	34.3	36.5 (+6.4%)	38.0 (+10.8%)
5-year annual maximum daily maximum temperature (°C)	Annual	33	35.1 (+6.4%)	36.7 (+11.2%)
Number of summer days (days)	Annual	24.4	37.9 (+55%)	52.2 (+113%)
Percentage of days when daily maximum temperature is	Annual	12.4	22.1 (+70.9%)	30.9 (+139%)
above the 90 th percentile (%)				
Maximum of daily maximum temperature (°C)	Annual	30.9	33.2 (+7.4%)	34.9 (+12.9%)
Warm spell duration index (days)	Annual	7.9	21.8 (+177%)	46.9 (+496%)

Model Implications

- Elevated risk of wildfire
- Native species at risk / invasive species growth
 - o Rising cedar dieback levels and invasive spread
- Landslides and flooding from more frequent and intense winter storms
- Thinning to support adaptation and mitigation

Mosaic and Mitigation

Forests and forest products play a key role in climate change mitigation.

Across Mosaic's private lands, more than half a billion trees are growing and capturing carbon.

Mosaic continues to progress the commitment of becoming net-zero by 2035 and achieved important milestones in 2021:

- Reduced on-site burning of residuals by a further 3%, for a total reduction of over 18% since 2018;
- Announced the trial of the world's first electric log trucks.

Carbon & Climate Chang — Mosaic Forest Management (mosaicforests.com)

Sustainability Report — Mosaic Forest Management (mosaicforests.com)

BigCoast Forest Climate Initiative

MOSAIC FOREST MANAGEMENT

The BigCoast Forest Climate Initiative defers the harvesting of 40,000 hectares (100,000 acres) of private land in Coastal British Columbia

- **Project Type:** Improved Forest Management in **Temperate Forests**
- Standard: Verified Carbon Standard (VCS) VM00012
- **GHG Emission Reduction:** >20M metric tonnes CO₂e

Unique and Charismatic Features of The BigCoast Forest Climate Initiative

BIGCO¹ST REST CLIMATE INITIATIVE www.bigcoastforest.com

FOREST MANAGEMENT

Thank you!